skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guo, Xiaoting"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Antioxidant properties of inorganic nanoparticles in aqueous media are attracting growing interest due to their high surface reactivity. Materials such as cerium oxide, iron oxide, silver, and gold exhibit distinct radical-scavenging behaviors at the nanoscale, but reliable quantification remains challenging. Conventional assays developed for molecular antioxidants cannot be directly applied because probes such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) require methanol–water mixtures and are unstable in aqueous nanoparticle suspensions, while other assays are affected by nanoparticle-induced absorption or fluorescence changes. Here we demonstrate strategies to correct these interferences by independently measuring nanoparticle optical properties after oxidation and customizing assay conditions to account for the dilute, per-particle concentrations of nanomaterials. Using a high-throughput 96-well format, four adapted assays revealed that silver, ceria, and iron oxide nanoparticles possess substantially higher antioxidant capacities than Trolox, while gold showed negligible activity. This optimized approach enables reproducible comparison of nanoparticle antioxidants and provides a platform for tailoring nanostructures with enhanced radical-scavenging properties. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  2. Reactive surface coatings reduce cerium in nanoscale ceria leading to more potent antioxidant behavior. 
    more » « less
  3. Abstract Millions of people a year receive magnetic resonance imaging (MRI) contrast agents for the diagnosis of conditions as diverse as fatty liver disease and cancer. Gadolinium chelates, which provide preferredT1contrast, are the current standard but face an uncertain future due to increasing concerns about their nephrogenic toxicity as well as poor performance in high‐field MRI scanners. Gadolinium‐containing nanocrystals are interesting alternatives as they bypass the kidneys and can offer the possibility of both intracellular accumulation and active targeting. Nanocrystal contrast performance is notably limited, however, as their organic coatings block water from close interactions with surface Gadoliniums. Here, these steric barriers to water exchange are minimized through shape engineering of plate‐like nanocrystals that possess accessible Gadoliniums at their edges. Sulfonated surface polymers promote second‐sphere relaxation processes that contribute remarkable contrast even at the highest fields (r1= 32.6 × 10−3mGd−1s−1at 9.4 T). These noncytotoxic materials release no detectable free Gadolinium even under mild acidic conditions. They preferentially accumulate in the liver of mice with a circulation half‐life 50% longer than commercial agents. These features allow theseT1MRI contrast agents to be applied for the first time to the ex vivo detection of nonalcoholic fatty liver disease in mice. 
    more » « less